Remotely Operated Vehicle “ROV KIEL 6000“

Authors

DOI:

https://doi.org/10.17815/jlsrf-3-160

Abstract

The remotely operated vehicle ROV KIEL 6000 is a deep diving platform rated for water depths of 6000 meters. It is linked to a surface vessel via an umbilical cable transmitting power (copper wires) and data (3 single-mode glass fibers). As standard it comes equipped with still and video cameras and two different manipulators providing eyes and hands in the deep. Besides this a set of other tools may be added depending on the mission tasks, ranging from simple manipulative tools such as chisels and shovels to electrically connected instruments which can send in-situ data to the ship through the ROVs network, allowing immediate decisions upon manipulation or sampling strategies.

References

Amon, D. J., Copley, J. T., Dahlgren, T. G., Horton, T., Kemp, K. M., Rogers, A. D., & Glover, A. G. (2017). Observations of fauna attending wood and bone deployments from two seamounts on the Southwest Indian Ridge. Deep Sea Research Part II: Topical Studies in Oceanography, 136, 122 - 132.http://dx.doi.org/10.1016/j.dsr2.2015.07.003

Anderson, M.O., Hannington, M.D., Haase, K., Schwarz-Schampera, U., Augustin, N., McConachy, T. F., & Allen, K. (2016). Tectonic focusing of voluminous basaltic eruptions in magma-deficient backarc rifts.Earth and Planetary Science Letters, 440, 43 - 55. http://dx.doi.org/10.1016/j.epsl.2016.02.002

Chen, C., Copley, J. T., Linse, K., & Rogers, A. D. (2015). Low connectivity between ‘scalyfoot gastropod’ (Mollusca: Peltospiridae) populations at hydrothermal vents on the Southwest Indian Ridge and the Central Indian Ridge. Organisms Diversity & Evolution, 15(4), 663–670. http://dx.doi.org/10.1007/s13127-015-0224-8

Lehmenhecker, S., & Wullff, T. (2012). ROV-based Revolver Marker Dropper for Consistent Seafloor Surveying. Sea Technology, 53(7), 33-35. McGinnis, D. F., Sommer, S., Lorke, A., Glud, R. N., & Linke, P. (2014). Quantifying tidally driven benthic oxygen exchange across permeable sediments: An aquatic eddy correlation study. Journal of Geophysical Research: Oceans, 19(10), 6918–6932. http://dx.doi.org/10.1002/2014JC010303

Perner, M., Hentscher, M., Rychlik, N., Seifert, R., Strauss, H., & Bach,W. (2011). Driving forces behind the biotope structures in two low-temperature hydrothermal venting sites on the southern Mid-Atlantic Ridge. Environmental Microbiology Reports, 3(6), 727–737. http://dx.doi.org/10.1111/j.1758-2229.2011.00291.x

Perner, M., Petersen, J. M., Zielinski, F., Gennerich, H.-H., & Seifert, R. (2010). Geochemical constraints on the diversity and activity of H2-oxidizing microorganisms in diffuse hydrothermal fluids from a basalt- and an ultramafic-hosted vent. FEMS Microbiology Ecology, 74(1), 55–71. http://dx.doi.org/10.1111/j.1574-6941.2010.00940.x

Rovelli, L. (2014). Physical and geochemical controls on oxygen dynamics at continental margins and shelf seas (Doktorarbeit/PhD, Christian-Albrechts-Universität zu Kiel). Retrieved from http://oceanrep.geomar.de/23940/

Schmidt, K., Garbe-Schönberg, D., Hannington, M. D., Anderson, M. O., Bühring, B., Haase, K., . . .Koschinsky, A. (2017). Boiling vapour-type fluids from the nifonea vent field (new hebrides back-arc, vanuatu, sw pacific): Geochemistry of an early-stage, post-eruptive hydrothermal system. Geochimica et Cosmochimica Acta, 207, 185 - 209. http://dx.doi.org/10.1016/j.gca.2017.03.016

von Deimling, J. S., Rehder, G., Greinert, J., McGinnnis, D., Boetius, A., & Linke, P. (2011). Quantification of seep-related methane gas emissions at Tommeliten, North Sea. Continental Shelf Research, 31(7), 867 - 878. http://dx.doi.org/10.1016/j.csr.2011.02.012


Cite article as: GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel. (2017). Remotely Operated Vehicle “ROV KIEL 6000“ . Journal of large-scale research facilities, 3, A117. http://dx.doi.org/10.17815/jlsrf-3-160

Published

2017-08-23

Issue

Section

Articles

URN