JuSPARC - The Jülich Short-Pulsed Particle and Radiation Center
DOI:
https://doi.org/10.17815/jlsrf-6-174Abstract
JuSPARC, the Jülich Short-Pulsed Particle and Radiation Center, is a laser-driven facility to enable research with short-pulsed photon and particle beams to be performed at the Forschungszentrum Jülich. The conceptual design of JuSPARC is determined by a set of state-of-the-art time-resolved instruments, which are designed to address the electronic, spin, and structural states of matter and their dynamic behaviour. From these instruments and experiments JuSPARC derives the need of operating several dedicated high pulse-power laser systems at highest possible repetition rates. They serve as core units for optimized photon up-conversion techniques generating the light pulses for the respective experiments. The applications also include experiments with spin polarized particle beams, which require the use of laser-based polarized gas targets. Thus, in its rst stage JuSPARC comprises four driving laser systems, called JuSPARC_VEGA, JuSPARC_DENEB, JuSPARC_SIRIUS and JuSPARC_MIRA, which are outlined in this article.References
Büscher, M., Hützen, A., Engin, I., Thomas, J., Pukhov, A., Engels, R., . . . Sofikitis, D. (2019). Polarized proton beams from a laser-plasma accelerators. Int. J. Mod. Phys. A, 34, 1942028. http://dx.doi.org/10.1142/S0217751X19420284
Chiang, C.-T., Blättermann, A., Huth, M., Kirschner, J., & Widdra, W. (2012). High-order harmonic generation at 4 mhz as a light source for time-of-flight photoemission spectroscopy. Appl. Phys. Lett., 101(7), 071116. http://dx.doi.org/10.1063/1.4746264
Engels, R., Emmerich, R., Grigoryev, K., Paetz gen. Schieck, H., Ley, J., Mikirtytchiants, M., . . . Vassiliev, A. (2005). Background reduction by a getter pump around the ionization volume of a Lambshift polarimeter and possible improvements of polarized ion sources. Rev. Sc. Instrum., 76, 053305. http://dx.doi.org/10.1063/1.1898923
Engels, R., Emmerich, R., Ley, J., Tenckhoff, G., Paetz gen. Schieck, H., Mikirtytchiants, M., . . . Vassiliev, A. (2003). Precision Lamb-shift polarimeter for polarized atomic and ion beams. Rev. Sc. Instrum., 74, 4607. http://dx.doi.org/10.1063/1.1619550
Fabio Frassetto, P. M., & Poletto, L. (2014). Grating configurations for the spectral selection of coherent ultrashort pulses in the extreme-ultraviolet. Photonics, 1, 442 - 454. http://dx.doi.org/10.3390/photonics1040442
Gang, S.-g., Adam, R., Plötzing, M., von Witzleben, M., Weier, C., Parlak, U., . . . Oppeneer, P. M. (2018, Feb). Element-selective investigation of femtosecond spin dynamics in nipd magnetic alloys using extreme ultraviolet radiation. Phys. Rev. B, 97, 064412. http://dx.doi.org/10.1103/PhysRevB.97.064412
Hützen, A., Thomas, J., Böker, J., Engels, R., Gebel, R., Lehrach, A., . . . Büscher, M. (2019). Polarized proton beams from laser-induced plasmas. High Power Laser Science and Engineering, 7, e16. http://dx.doi.org/10.1017/hpl.2018.73
Ielmini, D., & Waser, R. (2016). Resistive switching: From fundamentals of nanoionic redox processes to memristive device applications [Edited Book]. Wiley. La-O-Vorakiat, C., Turgut, E., Teale, C., Kapteyn, H., Murnane, M., Mathias, S., . . . Silva, T. (2012).Ultrafast demagnetization measurements using extreme ultraviolet light: Comparison of electronic and magnetic contributions. Phys. Rev. X, 2, 011005. http://dx.doi.org/10.1103/PhysRevX.2.011005
Mathias, S., La-O-Vorakiat, C., Grychtol, P., Granitzka, P., Turgut, E., Shaw, J., . . . Kapteyn, H. P. (2012). Probing the timescale of the exchange interaction in a ferromagnetic alloy. Proc. Natl. Acad. Sci., 109,
http://dx.doi.org/10.1073/pnas.1201371109
Rudolf, D., La-O-Vorakiat, C., Battiato, M., Adam, R., Shaw, J. M., Turgut, E., . . . Oppeneer, P. (2012). Ultrafast magnetization enhancement in metallic multilayers driven by superdiffusive spin current. Nat. Comm., 3, 1037. http://dx.doi.org/10.1038/ncomms2029
Russbueldt, P., Hoffmann, D., Höfer, M., Löhring, J., Luttmann, J., Meissner, A., . . . Poprawe, R. (2015). Innoslab amplifiers. IEEE J. Sel. Top. Quantum Electron., 21(1), 447-463. http://dx.doi.org/10.1109/JSTQE.2014.2333234
Thomas, J., Hützen, A., Lehrach, A., Pukhov, A., Liangliang, L., Wu, Y., & Büscher, M. (2019). Scalig laws for the (de-)polarization time of relativistic particle beams in strong fields. Publication in preparation for Phys. Rev. Accel. Beams.
Tsymbal, E., & Zutic, I. (2012). Spin transport and magnetism [Book]. Boca Raton: CRC Press.
Tusche, C., Ellguth, M., Ünal, A. A., Chiang, C.-T., Winkelmann, A., Krasyuk, A., . . . Kirschner, J. (2011). Spin resolved photoelectron microscopy using a two-dimensional spin-polarizing electron mirror. Appl. Phys. Lett., 99(3), 032505. http://dx.doi.org/10.1063/1.3611648
Tusche, C., Krasyuk, A., & Kirschner, J. (2015). Spin resolved bandstructure imaging with a high resolution momentum microscope. Ultramicroscopy, 159, 520 - 529. (Special Issue: LEEM-PEEM 9) http://dx.doi.org/https://doi.org/10.1016/j.ultramic.2015.03.020
Weitenberg, J., Vernaleken, A., Schulte, J., Ozawa, A., Sartorius, T., Pervak, V., . . . Hänsch, T.W. (2017). Multi-pass-cell-based nonlinear pulse compression to 115 fs at 7.5 mj pulse energy and 300 w average power. Opt. Express, 25(17), 20502–20510.http://dx.doi.org/10.1364/OE.25.020502
Wu, Y., Ji, L., Geng, X., abd Nengwen Wang, Q. Y., Feng, B., Guo, Z., . . . Li, R. (2019). Polarized electron-beam acceleration driven by vortex laser pulses. New J. Phys., 21(7), 073052.http://dx.doi.org/10.1088/1367-2630/ab2fd7
Wu, Y., Ji, L., Geng, X., Yu, Q., Wang, N., Feng, B., . . . Li, R. (2019). Polarized electron beam generation in plasma-driven wakefield acceleration. Phys. Rev. E, 100, 043202. http://dx.doi.org/10.1103/PhysRevE.100.043202
Cite article as: Forschungszentrum Jülich. (2020). JuSPARC — The Jülich Short-Pulsed Particle and Radiation Center. Journal of large-scale research facilities, 6, A138. http://dx.doi.org/10.17815/jlsrf-6-174
Downloads
Published
Issue
Section
URN
License
Copyright (c) 2020 Journal of large-scale research facilities JLSRF
This work is licensed under a Creative Commons Attribution 4.0 International License.
Submission of an article authorizes Forschungszentrum Jülich to publish the accepted version of the article under a CC BY 4.0 Creative Commons Licence Creative Commons-Lizenz CC-BY 4.0. No article processing charges or submission fees are involved.