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Abstract: The LiquidJet PES apparatus is a specialized end-station at the synchrotron radiation facility
BESSY II, Berlin, for studying the electronic structure of liquid water, aqueous and non-aqueous solu-
tions with soft X-ray photoelectron spectroscopy. Targets are liquid microjets that are introduced into
a vacuum chamber via a ∼ 20 µm glass capillary.

1 Introduction

Fundamental interactions between solute electronic structure and highly volatile liquid solutions, es-
pecially water, which are essentially the key to chemical reactivity, have remained poorly understood.
Only with the introduction of the liquid microjet technique, and its �rst application in conjunction with
synchrotron radiation about a decade ago, has liquid-phase photoelectron spectroscopy evolved as a
research �eld.
The LiquidJet PES station presented here has been designed to measure (photo)-electrons from a liquid
microjet that is introduced into the main interaction chamber via an 18-25 µm glass capillary, forming
a free liquid surface in vacuum. One 1500 l/s turbo pump and several lN2 cold-traps keep the pressure
on the 10−4 mbar level under operation conditions. Photoelectrons are detected by a robust and com-
pact SPECS EA10 hemispherical analyzer with a replaceable 100-500 µm skimmer ori�ce, acting as a
pressure barrier between the main chamber and the electron analyzer. The small distance of <0.5 mm
between the jet and the ori�ce assures that detected electrons have not su�ered from inelastic scattering
with water gas-phase molecules near the jet surface. Typical energy resolutions of the hemispherical
energy analyzer are 100 meV at 10 eV pass energy (used for valence photoelectron measurements at
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170 – 200 eV photon energy) and ∼ 200 meV at 20 eV pass energy (used for core level and resonant
photoelectron measurements at higher photon energies up to 1500 eV).

Figure 1: View of the LiquidJet PES endstation. The vacuum chamber is rotatable to measure under
di�erent angles between the polarization vector of the incident light and the detector.
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Figure 2: View inside the interaction chamber.

2 Instrument application

Typical applications are:

• Systems: organic and inorganic molecules, and nanoparticles in water
• Electronic structure of liquid water and aqueous solution
• Solute and solvent electron binding energies
• Core-level chemical shifts, lowest ionization energies and reorganization energies
• Structure and composition of solution interfacial structure; depth pro�les
• Chemical equilibria at the solution surface
• Ultrafast relaxation processes induced by core-level ionization/excitation
• Ultrafast energy and charge transfer in hydrogen-bonded systems
• Resonant and non-resonant autoionization (Auger) electron spectroscopy
• Electron scattering processes in water and in solution
• Angular-resolved PE spectroscopy from aqueous solution

Methods:

• (Resonant and o�-resonant) X-ray photoelectron spectroscopy (XPS, RPES)
• Auger-electron X-ray spectroscopy
• Angular resolved photoelectron spectroscopy (ARPES)
• Partial electron yield measurements (PEY-XPS)
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3 Technical data

Monochromator Designed to match layout of few
beamlines

Experiment in vacuum Yes
Temperatur range 275 – 300 K
Detector SPECS EA 10-MCP

hemispherical electron analyzer
Manipulators xyz manipulators for

positioning the liquid jet and
the jet- catching reservoir

Microjet Unit Temperature-stabilized liquid
microjet emerging from
typically 18-25 micrometer
diameter glass capillaries

Special features Rotatable vacuum chamber to
measure under magic angle
(54.7°), 90°, and 0°
Second port available for addi-
tional detectors (e.g. photon
spectrometerfor dispersed
�uorescence measurements)

Table 1: Technical parameters of the LiquidJet PES endstation
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4 Spectra

Figure 3: Examples of valence and core-level photoelectron spectra: from neat water (blue, Ephot = 200
and 600 eV), from 1 molar NaI aqueous solution (red, Ephot = 200 eV), from 1 M imidazole aqueous
solution at pH = 10.5 (green, Ephot = 200 and 480 eV) and at pH = 2.6 (cyan, Ephot = 480 eV), and from
1 M NiCl2 aqueous solution (orange, Ephot = 200 and 1000 eV). Important solute peaks are labeled and
highlighted.
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Figure 4: Example for an RPES measurement: Resonant spectra from a 0.8 M TiCl3 aqueous solution are
obtained when sweeping the photon energy across the Ti3+ L2,3 XA edges. Auger-electron emission
ranges corresponding to 2p-3p3d and 2p-3d3d are labeled. 3p-XA and 3d-XA are abbreviations used in
labelling the corresponding PEY-XA spectra. Figure (A) is a waterfall-spectrum representation, show-
ing the electron distribution curves measured as a function of electron kinetic energy. In (B) the same
data is presented as a contour map (photon energy versus kinetic energy of the electrons, and electron
signal is presented by color; intensity increases in the order of blue, green, yellow, brown, and white.
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