Airborne Imaging Spectrometer HySpex




The Remote Sensing Technology Institute (IMF) of the German Aerospace Center (DLR) operates an airborne imaging spectrometer system called HySpex. Owing to its accurate calibration, the system is well suited for benchmark reference measurements and feasibility studies for Earth observation applications. The sensor also serves as simulator for the upcoming German satellite mission EnMAP. HySpex covers the spectral range from the visible and near infrared (VNIR) to the short wave infrared (SWIR) and it has been extensively characterised with numerous measurements in the IMF calibration laboratory (CHB). The HySpex instrument is made available to interested third party users through the user service Optical Airborne Remote Sensing and Calibration Homebase (OpAiRS).


Kiemle, S., Molch, K., Schropp, S., Weiland, N., & Mikusch, E. (2014). Big Data management in Earth Observation: the German Satellite Data Archive at DLR. In P. Soille & P. Marchetti (Eds.), Big data from space, bids’14 (pp. 46–49). Publications Office of the European Union.

Köhler, C. H., & Schneider, M. (2015, 22 May). HySpex Product Guide (Issue No. 1.1). Deutsches Zentrum für Luft- und Raumfahrt. Retrieved from

Krauß, T. (2014, April). Six Years Operational Processing of Satellite data using CATENA at DLR: Experiences and Recommendations. Kartographische Nachrichten, 64(2), 74–80. Retrieved from

Krauß, T., d’Angelo, P., Schneider, M., & Gstaiger, V. (2013, May). The Fully Automatic Optical Processing System CATENA at DLR. In C. Heipke, K. Jacobsen, F. Rottensteiner, & U. Sörgel (Eds.), ISPRS Hannover workshop 2013 (Vol. XL-1/W, pp. 177–181). Copernicus Publications.

Kurz, F., Türmer, S., Meynberg, O., Rosenbaum, D., Runge, H., Reinartz, P., & Leitloff, J. (2012, April). Low-cost optical Camera System for real-time Mapping Applications. Photogrammetrie Fernerkundung Geoinformation, Jahrgang 2012(2), 159–176.

Lenhard, K., Baumgartner, A., Gege, P., Nevas, S., Nowy, S., & Sperling, A. (2015, November). Impact of Improved Calibration of a NEO HySpex VNIR-1600 Sensor on Remote Sensing of Water Depth. Transactions on Geoscience and Remote Sensing, 53(11), 6085-6098.

Lenhard, K., Baumgartner, A., & Schwarzmaier, T. (2015, April). Independent Laboratory Characterization of NEO HySpex Imaging Spectrometers VNIR-1600 and SWIR-320m-e. IEEE Transactions on Geoscience and Remote Sensing, 53(4), 1828-1841.

Leutenegger, S., Chli, M., & Siegwart, R. Y. (2011, November). BRISK: Binary Robust invariant scalable keypoints. In 2011 international conference on computer vision (p. 2548-2555).

Müller, R., Lehner, M., Reinartz, P., & Schroeder, M. (2005, May). Evaluation of Spaceborne and Airborne Line Scanner Images using a Generic Ortho Image Processor. In C. Heipke, K. Jacobsen, & M. Gerke (Eds.), High Resolution Earth Imaging for Geospatial Information, Hannover (Vol. Vol. XXXVI). Retrieved from

DLR Remote Sensing Technology Institute. (2016). The Calibration Home Base for Imaging Spectrometers. Journal of large-scale research facilities, 2, A82.

Richter, R., Schläpfer, D., & Müller, A. (2011, July). Operational Atmospheric Correction for Imaging Spectrometers Accounting for the Smile Effect. IEEE Trans. Geoscience and Remote Sensing, 49(5), 1772–1780.

Schwind, P., Schneider, M., & Müller, R. (2014, November). Improving HySpex Sensor Co-Registration Accuracy using BRISK and Sensor-model based RANSAC. In C. Toth, T. Holm, & B. Jutzi (Eds.), Pecora 19 Symposium in conjunction with the Joint Symposium of ISPRS Technical Commission I and IAG Commission 4 (Vol. XL-1, pp. 371–376). ISPRS Archive.

Cite article as: DLR Remote Sensing Technology Institute (IMF). (2016). Airborne Imaging Spectrometer HySpex. Journal of large-scale research facilities, 2, A93.