HNF - Helmholtz Nano Facility


  • Wolfgang Albrecht Forschungszentrum Jülich
  • Juergen Moers Forschungszentrum Juelich
  • Bernd Hermanns Forschungszentrum Juelich



The Helmholtz Nano Facility (HNF) is a state-of-the-art cleanroom facility. The cleanroom has ~1100 m2 with cleanroom classes of DIN ISO 1-3. HNF operates according to VDI DIN 2083, Good Manufacturing Practice (GMP) and aquivalent to Semiconductor Industry Association (SIA) standards. HNF is a user facility of Forschungszentrum Jülich and comprises a network of facilities, processes and systems for research, production and characterization of micro- and nanostructures. HNF meets the basic supply of micro- and nanostructures for nanoelectronics, fluidics. micromechanics, biology, neutron and energy science, etc..

The task of HNF is rapid progress in nanostructures and their technology, offering efficient access to infrastructure and equipment. HNF gives access to expertise and provides resources in production, synthesis, characterization and integration of structures, devices and circuits. HNF covers the range from basic research to application oriented research facilitating a broad variety of different materials and different sample sizes.

Author Biography

Wolfgang Albrecht, Forschungszentrum Jülich

Helmholtz Nano Facility, Head


Gasparyan, F., Khondkaryan, H., Arakelyan, A., Zadorozhnyi, I., Pud, S. & Vitusevich, S. (2016). Doublegated si nw fet sensors: Low-frequency noise and photoelectric properties. Journal of Applied Physics, 120(6), 064902.

Grünberger, A., Paczia, N., Probst, C., Schendzielorz, G., Eggeling, L., Noack, S., . . . Kohlheyer, D. (2012). A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level. Lab Chip, 12, 2060-2068.

Günel, H. Y., Borgwardt, N., Batov, I. E., Hardtdegen, H., Sladek, K., Panaitov, G., . . . Schäpers, T. (2014). Crossover from Josephson Effect to Single Interface Andreev Reflection in Asymmetric Superconductor/ Nanowire Junctions. Nano Letters, 14(9), 4977-4981.

Heedt, S., Prost, W., Schubert, J., Grützmacher, D., & Schäpers, T. (2016). Ballistic Transport and Exchange Interaction in InAs Nanowire Quantum Point Contacts. Nano Letters, 16(5), 3116-3123.

Kireev, D., Seyock, S., Ernst, M., Maybeck, V.,Wolfrum, B., & Offenhäusser, A. (2017). Versatile Flexible Graphene Multielectrode Arrays. Biosensors, 7, 1.

Luong, G. V., Narimani, K., Tiedemann, A. T., Bernardy, P., Trellenkamp, S., Zhao, Q. T., & Mantl, S. (2016). Complementary Strained Si GAA Nanowire TFET Inverter With Suppressed Ambipolarity. IEEE Electron Device Letters, 37(8), 950-953.

Pud, S., Li, J., Sibiliev, V., Petrychuk, M., Kovalenko, V., Offenhäusser, A., & Vitusevich, S. (2014). Liquidand Back Gate Coupling Effect: Toward Biosensing with Lowest Detection Limit. Nano Letters, 14(2), 578-584.

Verbiest, G. J., Xu, D., Goldsche, M., Khodkov, T., Barzanjeh, S., von den Driesch, N., . . . Stampfer, C. (2016). Tunable mechanical coupling between driven microelectromechanical resonators. Applied Physics Letters, 109(14), 143507.

Cite article as: Forschungszentrum Jülich GmbH . (2017). HNF - Helmholtz Nano Facility. Journal of large-scale research facilities, 3, A112.