HNF - Helmholtz Nano Facility

Authors

  • Wolfgang Albrecht Forschungszentrum Jülich
  • Juergen Moers Forschungszentrum Juelich
  • Bernd Hermanns Forschungszentrum Juelich

DOI:

https://doi.org/10.17815/jlsrf-3-158

Abstract

The Helmholtz Nano Facility (HNF) is a state-of-the-art cleanroom facility. The cleanroom has ~1100 m2 with cleanroom classes of DIN ISO 1-3. HNF operates according to VDI DIN 2083, Good Manufacturing Practice (GMP) and aquivalent to Semiconductor Industry Association (SIA) standards. HNF is a user facility of Forschungszentrum Jülich and comprises a network of facilities, processes and systems for research, production and characterization of micro- and nanostructures. HNF meets the basic supply of micro- and nanostructures for nanoelectronics, fluidics. micromechanics, biology, neutron and energy science, etc..

The task of HNF is rapid progress in nanostructures and their technology, offering efficient access to infrastructure and equipment. HNF gives access to expertise and provides resources in production, synthesis, characterization and integration of structures, devices and circuits. HNF covers the range from basic research to application oriented research facilitating a broad variety of different materials and different sample sizes.

Author Biography

Wolfgang Albrecht, Forschungszentrum Jülich

Helmholtz Nano Facility, Head

References

Gasparyan, F., Khondkaryan, H., Arakelyan, A., Zadorozhnyi, I., Pud, S. & Vitusevich, S. (2016). Doublegated si nw fet sensors: Low-frequency noise and photoelectric properties. Journal of Applied Physics, 120(6), 064902. http://dx.doi.org/10.1063/1.4960704

Grünberger, A., Paczia, N., Probst, C., Schendzielorz, G., Eggeling, L., Noack, S., . . . Kohlheyer, D. (2012). A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level. Lab Chip, 12, 2060-2068. http://dx.doi.org/10.1039/C2LC40156H

Günel, H. Y., Borgwardt, N., Batov, I. E., Hardtdegen, H., Sladek, K., Panaitov, G., . . . Schäpers, T. (2014). Crossover from Josephson Effect to Single Interface Andreev Reflection in Asymmetric Superconductor/ Nanowire Junctions. Nano Letters, 14(9), 4977-4981. http://dx.doi.org/10.1021/nl501350v

Heedt, S., Prost, W., Schubert, J., Grützmacher, D., & Schäpers, T. (2016). Ballistic Transport and Exchange Interaction in InAs Nanowire Quantum Point Contacts. Nano Letters, 16(5), 3116-3123. http://dx.doi.org/10.1021/acs.nanolett.6b00414

Kireev, D., Seyock, S., Ernst, M., Maybeck, V.,Wolfrum, B., & Offenhäusser, A. (2017). Versatile Flexible Graphene Multielectrode Arrays. Biosensors, 7, 1. http://dx.doi.org/10.3390/bios7010001

Luong, G. V., Narimani, K., Tiedemann, A. T., Bernardy, P., Trellenkamp, S., Zhao, Q. T., & Mantl, S. (2016). Complementary Strained Si GAA Nanowire TFET Inverter With Suppressed Ambipolarity. IEEE Electron Device Letters, 37(8), 950-953. http://dx.doi.org/10.1109/LED.2016.2582041

Pud, S., Li, J., Sibiliev, V., Petrychuk, M., Kovalenko, V., Offenhäusser, A., & Vitusevich, S. (2014). Liquidand Back Gate Coupling Effect: Toward Biosensing with Lowest Detection Limit. Nano Letters, 14(2), 578-584. http://dx.doi.org/10.1021/nl403748x

Verbiest, G. J., Xu, D., Goldsche, M., Khodkov, T., Barzanjeh, S., von den Driesch, N., . . . Stampfer, C. (2016). Tunable mechanical coupling between driven microelectromechanical resonators. Applied Physics Letters, 109(14), 143507. http://dx.doi.org/10.1063/1.4964122


Cite article as: Forschungszentrum Jülich GmbH . (2017). HNF - Helmholtz Nano Facility. Journal of large-scale research facilities, 3, A112. http://dx.doi.org/10.17815/jlsrf-3-158

Published

2017-05-22

Issue

Section

Articles

URN