• Johannes von Borany Helmholtz-Zentrum Dresden Rossendorf Institute of Ion Beam Physics and Materials Research
  • Stefan Facsko Helmholtz-Zentrum Dresden Rossendorf Institute of Ion Beam Physics and Materials Research http://orcid.org/0000-0003-3698-3793
  • Annette Weissig Helmholtz-Zentrum Dresden Rossendorf Institute of Ion Beam Physics and Materials Research




In the Ion Beam Center (IBC), various set-ups – electrostatic accelerators, ion implanters, plasma-based ion implantation equipment, low-energy ion tools, an ion microscope etc. – are combined into a unique facility for research and applications using ion beams. Almost all ions from stable chemical nuclides are available in the ion energy range from 10 eV to about 60 MeV. In addition to broad beams, also focused (down to 1 nm) and highly-charged (charge state up to 45+) ion beams, or ions extracted from a plasma can be provided. In total, the IBC operates more than 30 dedicated tools or beamline end-stations. The specific expertise of IBC is the modification and analysis of solids by energetic ions aimed to develop novel materials for information technology, electronics or energy systems. In addition, ion beam analysis techniques became of increasing importance for interdisciplinary fields like geochemistry, climate or environmental research and resources technology. Special add-on services offered ensure a successful realization of user experiments. Based on a long-term expertise, specific equipment and common commercial procedures, the IBC is strongly active in the use of ion beam techniques for industrial applications aimed to initiate valuable product innovation.

Author Biographies

Johannes von Borany, Helmholtz-Zentrum Dresden Rossendorf Institute of Ion Beam Physics and Materials Research

Ion BeamCenter


Stefan Facsko, Helmholtz-Zentrum Dresden Rossendorf Institute of Ion Beam Physics and Materials Research

Ion Beam Center

Annette Weissig, Helmholtz-Zentrum Dresden Rossendorf Institute of Ion Beam Physics and Materials Research

IBC User Office


Akhmadaliev, S., Heller, R., Hanf, D., Rugel, G., & Merchel, S. (2013). The new 6MV AMS-facility DREAMS at Dresden. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 294, 5-10. http://dx.doi.org/10.1016/j.nimb.2012.01.053

Bilek, M. M. M., Kondyurin, A., Dekker, S., Steel, B. C., Wilhelm, R. A., Heller, R., . . . Möller, W. (2015). Depth-Resolved Structural and Compositional Characterization of Ion-Implanted Polystyrene that Enables Direct Covalent Immobilization of Biomolecules. The Journal of Physical Chemistry C, 119(29), 16793-16803.


Bischoff, L., Mazarov, P., Bruchhaus, L., & Gierak, J. (2016). Liquid metal alloy ion sources - An alternative for focussed ion beam technology. Applied Physics Reviews, 3(2), 021101. http://dx.doi.org/10.1063/1.4947095

El-Said, A. S., Wilhelm, R. A., Heller, R., Sorokin, M., Facsko, S., & Aumayr, F. (2016). Tuning the fabrication of nanostructures by low-energy highly charged ions. Physical ReviewLetters, 117, 126101.


Gruber, E., Wilhelm, R., Pétuya, R., Smejkal, V., Kozubek, R., Hierzenberger, A., . . . Aumayr, F. (2016). Ultrafast electronic response of graphene to a strong and localized electric field. Nature Communications, 7, 13948. http://dx.doi.org/10.1038/ncomms13948

Hanf, D., Buchriegler, J., Renno, A., Merchel, S., Munnik, F., Ziegenrücker, R., . . . von Borany, J. (2016). A new particle-induced X-ray emission set-up for laterally resolved analysis over wide areas. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 377, 17 - 24. http://dx.doi.org/10.1016/j.nimb.2016.03.032

Hlawacek, G., Veligura, V., van Gastel, R., & Poelsema, B. (2014). Helium ion microscopy. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 32(2), 020801. http://dx.doi.org/10.1116/1.4863676

Jang, J.-W., Friedrich, D., Müller, S., Lamers, M., Hempel, H., Lardhi, S., . . . Abdi, F. F. (2017). Enhancing Charge Carrier Lifetime in Metal Oxide Photoelectrodes through Mild Hydrogen Treatment. Advanced Energy Materials, 7(22), 1701536. http://dx.doi.org/10.1002/aenm.201701536

Keller, A., & Facsko, S. (2010). Ion-Induced Nanoscale Ripple Patterns on Si Surfaces: Theory and Experiment. Materials, 3(10), 4811–4841. http://dx.doi.org/10.3390/ma3104811

Klingner, N., Heller, R., Hlawacek, G., von Borany, J., Notte, J., Huang, J., & Facsko, S. (2016). Nanometer scale elemental analysis in the helium ion microscope using time of flight spectrometry. Ultramicroscopy, 162, 91 - 97. http://dx.doi.org/10.1016/j.ultramic.2015.12.005

Landgraf, A., Dzhumabaeva, A., Abdrakhmatov, K. E., Strecker, M. R., Macaulay, E. A., Arrowsmith, J., . . . Merchel, S. (2016). Repeated large-magnitude earthquakes in a tectonically active, low-strain continental interior: The northern Tien Shan, Kyrgyzstan. Journal of Geophysical Research: Solid Earth, 121(5), 3888–3910. http://dx.doi.org/10.1002/2015JB012714

Müller, T., Osenbrück, K., Strauch, G., Pavetich, S., Al-Mashaikhi, K.-S., Herb, C., . . . Sanford, W. (2016). Use of multiple age tracers to estimate groundwater residence times and long-term recharge rates in arid southern Oman. Applied Geochemistry, 74, 67 - 83. http://dx.doi.org/10.1016/j.apgeochem.2016.08.012

Ott, U., Merchel, S., Herrmann, S., Pavetich, S., Rugel, G., Faestermann, T., . . . Folco, L. (2014). Cosmic ray exposure and pre-atmospheric size of the Gebel Kamil iron meteorite. Meteoritics & Planetary Science, 49(8), 1365–1374. http://dx.doi.org/10.1111/maps.12334

Ou, X., Heinig, K.-H., Hubner, R., Grenzer, J., Wang, X., Helm, M., . . . Facsko, S. (2015). Faceted nanostructure arrays with extreme regularity by self-assembly of vacancies. Nanoscale, 7, 18928-18935.


Philipp, P., & Bischo, L. (2012). Investigation of nano structures on ta-C lms made by gallium FIB lithography. Diamond and Related Materials, 23, 140 - 143. http://dx.doi.org/10.1016/j.diamond.2012.01.025

Prucnal, S., Gao, K., Skorupa, I., Rebohle, L., Vines, L., Schmidt, H., . . . Zhou, S. (2015). Band-gap narrowing in mn-doped gaas probed by room-temperature photoluminescence. Physical Review B, 92, 224407.


Schmidt, K., Akhmadaliev, S., Anders, M., Bemmerer, D., Caciolli, A., Dietz, M., . . . Zuber, K. (2014). Strength of the Ep =1:842 MeV resonance in the 40Ca(p,g)41Sc reaction reexamined. Physical Review C, 89, 045802.


Schwanghart, W., Bernhardt, A., Stolle, A., Hoelzmann, P., Adhikari, C., B.R.and Andermann, Tofelde, C., . . . Korup, O. (2016). Repeated catastrophic valley infill following medieval earthquakes in the Nepal Himalaya. Science, 351, 147-150. http://dx.doi.org/10.1126/science.aac9865

Werner, Z., Barlak, M., Ratajczak, R., Konarski, P., Markov, A. M., & Heller, R. (2016). Electron-beam pulse annealed Ti-implanted GaP. Journal of Applied Physics, 120(8), 085103. http://dx.doi.org/10.1063/1.4961518

Wilhelm, R. A., Gruber, E., Ritter, R., Heller, R., Facsko, S., & Aumayr, F. (2014). Charge Exchange and Energy Loss of Slow Highly Charged Ions in 1 nm Thick Carbon Nanomembranes. Physical Review Letters, 112, 153201. http://dx.doi.org/10.1103/PhysRevLett.112.153201

Wilsenach, H., Zuber, K., Degering, D., Heller, R., & Neu, V. (2017). High precision half-life measurement of 147Sm α decay from thin-film sources. Physical Review C, 95, 034618. http://dx.doi.org/10.1103/PhysRevC.95.034618

Zhou, S., Li, L., Yuan, Y., Rushforth, A. W., Chen, L., Wang, Y., . . . Helm, M. (2016). Precise tuning of the Curie temperature of (Ga,Mn)As-based magnetic semiconductors by hole compensation: Support for valence-band ferromagnetism. Physical Review B, 94, 075205. http://dx.doi.org/10.1103/PhysRevB.94.075205

Zipf, L., Merchel, S., Bohleber, P., Rugel, G., & Scharf, A. (2016). Exploring ice core drilling chips from a cold Alpine glacier for cosmogenic radionuclide (10Be) analysis. Results in Physics, 6, 78 - 79. http://dx.doi.org/10.1016/j.rinp.2016.01.002

Cite article as: Helmholtz-Zentrum Dresden – Rossendorf (HZDR) . (2017). IBC - ION BEAM CENTER. Journal of large-scale research facilities, 3, A125. http://dx.doi.org/10.17815/jlsrf-3-159